LML33 Manual

Linux Media Labs

2002-08-03

Contents

1 Notational Conventions

You input is designated with §, for the command shell input prompt, and with
for superuser mode input. Your input and system response is presented in
bold face.

2 System Requirements

RedHat Linux 5.2, 6.0, 6.1,6.2, 7.1, 7.2 (other modern distributions should
work as well)

Kernel 2.0.34, 2.0.36, 2.2.X, 2.4.X
CPU 200MHz or more

RAM 32M or more
EIDE or SCSI-2

Any Video card

Video overlay mode was tested with Matrox Millenium AGP G200 and
other AGP cards may work

3 Miscelleneus

Because of the variations in Linux distributions, as well as because of quick rate
of change in the shipping kernels Linux Media Labs provides drivers in source
form, under the terms of Gnu General Public License (GNU GPL).

LML33 driver is being developed as part of generic Linux motion Video Streams
infrastructure (LINVS). Therefore, we refer to LINVS driver and LINVS device
when topics are not specific to LML33.

4 LML33 card

Install the LML33 card and reboot the system. Select Ignore when the new
hardware added message is dispalyed while rebooting.

5 Linux System Configuraion

The system configuration can only be changed by the root (superuser), so you
need to enter superuser mode:

$su -

After that you need to allocate memory for DMA RAM used by the board to
store compressed JPEG video frames during video capture and playback. Your
LML33 card requires 2MB of memory to b‘e allocated for its use.

If you have more then one LML33 card then you need 2Mb of RAM
reserved per LML33 card.

Depending on the boot loader you use - LILO or GRUB (which is used by
RedHat since revision 7.1) do the following:

5.1 LILO

For example if your system has 256 Mb RAM then you need to edit the /etc/lilo.conf
file by adding:

append = "mem—=254M"

to the image you’re booting from. If you have 96Mb you need to add 'mem=94M’
line etc. Make certain if you have smp setup, that you use the smp section of
lilo.conf, not the linux-up section.

Here is an example of /etc/lilo.conf file:

image=/boot/vmlinuz-2.0.34-0.6
label=linux

append = "mem=62M"
root=/dev/hda3 initrd=/boot/initrd-2.0.34-0.6.img read-only

*Please note, if you have more then one append string in your lilo.conf file, you
must add your memory specifications to

the existing append string in order to avoid complications.

After that you must run ’lilo’ command (to activate changes to your /etc/lilo.conf).

5.2 GRUB

Change the line in the /boot/grub.conf file that looks like :

kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hdal,ro
to
kernel /boot/vmlinuz-2.4.7-10 ro root=/dev/hdal,ro mem=250M

after reboot, that will reduce the memory size used by the kernel, leaving free
memory needed by LinVS driver.

6 Linux Video Streaming Driver (LINVS v1.1x)

6.1 Obtaining the Software

Mount the CDROM.

mount /mnt/cdrom

#cd /tmp

Untar this file:
$ tar zxvf /mnt/cdrom/LML33/LML33driverl.1.*.tgz

This would create subdirecotry LinVS that contains low level video streaming
driver.

Before using the driver for the first time you need to create compression video
device nodes in the /dev directory, using script “mkvidnodes”, which is located
together with your driver in the LinVS directory.

cd /tmp/LinVS
#./mkvidnodes

That will make nodes:

e /dev/mvideo/status0

e /dev/mvideo/stream0

e /dev/mvideo/frameQ

e /dev/mvideo/rawframeQ

e /dev/mvideo/codec0

e /dev/mvideo/videodlinux(
that correspond to the first card installed on the system. Nodes with numeric
suffixes (like /dev/mvideo/stream?2) corresopond to other LINVS cards installed

on your system. Numeric suffix of 0 has aliases without defined suffixes (i.e.
/dev/mvideo/status == /dev/mvideo/status0)

In order for the changes in the conf file to take effect you must reboot your
system before proceding.

6.2 Compiling the Driver
Before proceding with compiling of the LML33 Driver Module, make certain that

you have a symlink “linux” for your running kernel in /usr/src if not created
already create the symlink by using the following command:

su -

#In -s /usr/src/linux-... /usr/src/linux
Change directory to LinVS and make the loadable driver

cd /tmp/LinVS
make

The 'make’ command would build the loadable driver object file: Im133.0

6.3 Loading the Driver Module

You may load LML33 driver after each reboot manually, or modify the /etc/conf.modules
to let this happen automatically.

To manually load the driver:

$ su -

/sbin/insmod /tmp/LinVS/lml33.0 [optional insmod line
parameters]

Don’t forget to exit superuser mode:
exit

At this point you should check the /dev/mvideo/status for installed driver in-
formation that should look simular to:

$cat /dev/mvideo/status0

LML33 driver version 1.1.*

Copyright (C) 1987-2000 Vassili Leonov and others.

LML33 driver comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it under
certain conditions.

Check http://www.linuxmedialabs.com/Iml33src for latest release.
high memory=0x03f00000 nBoards=1 screen width=1024 screen height=768
vmem _base=0 bitrate=80000

board=0

bus=128

devFn=104

pciPhysBaseAddr=0xdd800000

Im133PHighMemory=0x03f00000

pcilrqg= 9

bufferSize=0x1f000

Double check that Im133PHighMemory corresponds to your RAM size prop-
erly (i.e. to 62M is you have a 64M system etc.)

6.4 Configuring System to Load LML33 Driver Module
Automatically

In order to load 1ml33.0 module automatically you need to do the following;:
su -
Add the line:

alias char-major-194 Iml33

to file /etc/conf.modules or /etc/modules.conf in recent distributions.
For better video capture quality, add options line to the above said conf file

options Iml33 video stream=1 video input=1 color encoding=1time decimation=1
bitrate=250000

Copy file Iml33.0 to the location where it would be autoloadable:
cp /tmp/LinVS/Iml33.0 /lib/modules/<kernel>/misc

(substitute <kernel> with the directory corresponding to the kernel version
you’re running, or ’smp’ if you’re using dual CPU system, if there is no /misc
directory, copy the file to /lib/modules/<kernel>/)

Note : if misc subdirectory is not available under /lib/modules/<kernel>
it should be created.

To check the version of your current kernel, use:
#uname -r

Then procede to execute the following command:
depmod -a

now, you should be able to autoload the driver by just trying to read any of the
/dev/mvideo/* devices:

$ cat /dev/mvideo/status
LML33 driver version 1.1.16

6.5 Testing the LML33 card
To capture a single jpeg frame in LML33 format:
$ dd if=/dev/mvideo/frame of=file.jpeg

To put a still image to LML33 analog video output:
$dd if=file.jpg of=/dev/mvideo/frame

To capture a video stream:
$ dd if=/dev/mvideo/stream of=filename.mjpg bs=50k

To playback a video stream
$ dd if=filename.mjpg of=/dev/mvideo/stream bs=50k

You can also use cp command instead of dd

6.6 Troubleshooting

If you run into any problems with the driver is helps to rebuild (and reinstall
it) with debugging support turned on. Change to the driver directory and do:

$ make clean
$ make “CFLAGS = -DDEBUG=1 -O -Wall”

Change to superuser mode and enable generation of debug log by editing file
/etc/syslog.conf to have destination for debug level messages, for example:
* =debug /var/log/debug. After that restart syslogd with the following com-
mand:

$ /etc/rc.d/init.d/syslog restart

Unload 1ml133 module, move Iml33.0 to the location you load this module from
and reload 1ml33 module. You can now use:

$ tail -f /var/log/debug

to view debugging messages from the driver.

The above procedure is especially recommended is you're getting mysterious
-EBUSY (“Device or resource busy”) status from driver calls, /var/log/debug
would contain extended explanation of the error.

7 File Conversion from LVMJPEG into AVI JPEG
Format

We provide a script to convert LML33 MJPEG file to JPEG-AVI format. The
script can be downloaded from http://linuxmedialabs.com/lml33src, the file
name is ‘'mjpg2avi’.

There are quite a few viewing programs (like xanim) for AVI under Linux and
other OSs (you need an add-on JPEG codec for AVI under MS WindowsXX,
for example from MainConcepts).

In order to convert a file video.jpeg to video.avi use the command:

$ mjpg2avi video.jpeg video.avi

8 Obtaining and Installing Main Actor Software

This tool is bundled with LML33 and is not developed by Linux Media Labs.

Download the software from http://www.mainactor.com ("MainActor Video
Editor for Linux") file name: MainActor-3.5.1-1.1386.rpm

$ su
to root and install it using rpm:

$ rpm -i MainActor-3.5.1-1.i386.rpm
Start the program using the command:

$ maseq&

Open top pull-down menu: "Help"/"Perform Registration" which brings a dia-
log box asking for a serial number.

Your serial number is:

(Please e-mail ma@linuxmedialabs.com if you did not receive the serial number).
Enter it and you now have a full version of MainActor installed on your system.

Please contact MainConcepts with problems and issues, their Web site is: http://www.mainactor.com

9 Linux Video MJPEG Stream Format

Linux Media Labs has defined a format for streaming motion JPEG video data
named Linux Video MJPEG Stream (LMJPEG). The format is based on a
sequence of JPEG frames (each JPEG frame contains one compressed image)(see
Figure 1)

JPEG frames are placed into hardware JPEG Codec Frames (same as Code
Buffers per Zoran terminology) and passed to hardware for decoding - or received
from hardware on encoding.

For the interlaced video stream two JPEG frames are grouped together - so two
images can be put into a Codec Frame. Resulting video signal has the first
(odd) image transmitted first during the first field that gets painted without
vertical offset on TV monitor, the second (even) image is transmitted as the
second field and is painted with half line offset down(see Figure 2).

When hardware codec runs out of new Codec Frames during playback, it repeats
the last one. This allows still intralaced picture to be displayed on TV monitor,
with effective resolution up to 720x480 (for NTSC).

Markers Markers

Codec Frame #1 Codec Frame #1
JPEG Frame i?); 3 JPEG Frame SOl
Field - Odd Lines APP3
EOI
EOI
Codec Frame #2 JPEG Frame so1
JPEG Frame SOL Field IT - Even Lines
APP3
EOI EOI
Codec Frame #3 Codec Frame #2
JPEG Frame i?); \ JPEG Frame soI
Field 1- Odd Lines APP3
EOI
EOI
Codec Frame #4
JPEG Frame SOI
JPEG Frame SOI . .
APP3 Field IT - Even Lines
EOI EOI
Non-Interlaced Stream Interlaced Stream

Figure 1: LMJPEG Stream Structure

Line #1 - Field I - ODD

Figure 2: Interlaced TV raster

For non-interlaced LMJPEG stream one JPEG frame goes per Codec Frame.
Each Image corresponding to JPEG frame is painted in the same vertical posi-
tion on TV monitor, thus vertical resolution is half of the interlaced mode.

Every Codec Frame has an APP3 marker inside the first (odd) JPEG frame with
information about the video stream parameters - or for non-interlaced stream
inside every JPEG frame (since there is only one JPEG frame per Codec Frame)

The structure of the APP3 marker block (specific to LMJPEG format):

| Data Size | Name | Explaination | typical value | Note
word mrkAPP3 JPEG Application Comment #3 0xE3FF
word lenAPP3 Size of this block, without mrkAPP3 | 0x2C00 Big Endian
byte * 4 | nm]] Comment ID, must be set to “LML” | "LML’\0
word frameNo Hardware generated frame seq. no
dword sec Timestamp on the frame, seconds
dword usec Timestamp on the frame, microsec.
dword frameSize Size of Code Frame that follows
dword frameSeqNo Driver generated CodeFrame seq.no
dword colorEncoding 1-NTSC, 2 - PAL, 3 - SECAM 1
dword videoStream 1 - D1, 3-CIF, 4-QCIF 1
word timeDecimation | See below 1
byte * 10 | filler[] Fill to total size of 0x30 (48)

10

Note: byte is 8 bits in size, word is 16 bits, double word is 32 bits.
All data is Little Endian - unless specified as Big Endian.

Little Endian means less significant byte goes first, therefore is word value is
0xE3FF it’s transmitted as 0xFF, OxE3 at the byte sequence level - unless
specified otherwise.

videoStream relates to the resolution in the captured JPEG frames. For NTSC
D1 means 720x240, CIF means 360x240 and QCIF means 180x120.

timeDecimation works as follows - if it’s set to 1, the stream goes at the incoming
video signal rate (60fps for NTSC, 25fps for PAL). If it’s set to 2 - only every
second frame is left, i.e. 60fps turns into 30fps. If it’s set to 3 then only every
3rd frame is left, i.e. 60fps turns into 20fps. If it’s set to 4 we get 15 fps and so
forth.

Here is an example of LML33 stream header (with every other field printed in
bold):

00000000 ff d8 ff e300 2c 4c 4d - 4c 0000 0091 9d £3 38 ,LML...... 8
00000010 77 16 Ob 0056 c9 00 00 -87 00 00 0001 00 00 00 w...V...........
00000020 01 00 00 0001 0000 00 - 00 00 00 00 00 00 00 00

10 LML33/DC10 Zoran Driver (V4L API driver)

There is another driver implementation available for LML33 which is using
Video4Linux API with MJPEG extensions. This driver is more suitable for
doing synchronized audio/video capture and playback. You can not use LinVS
driver and LML33/DC10 Zoran driver at the same time.

In order to install LML33/DC10 driver you need to mount LMLCD, then use
following commands:

cd /mnt/cdrom/LML33
./Imi33install.sh

this would install the driver files, as well as make sure the driver is loaded at
system startup.

If you want to stop using LML33/DC10 driver use the following command:

./Imi33uninstall.sh

11

11 Creating Video-CD / SVCD using mjpegtools
and VCDimager

In order to install video processing tools for Linux, mount LMLCD, then use
the following commands:

cd /mnt/cdrom/contrib

./softwarelnstall.sh
First step is to capture video into MJPEG encapsulated into AVI file format:
lavrec -d1 -fa -in -t 30 -q 80 test.avi

where -t switch sets the size of clip to be captured in seconds, so adjust it to
the amount of seconds you want to capture

After that you can edit the resolution AVI file with MainActor video editor
(maseq command) or another NLE for Linux, like Broadcast2000, Kino etc.

Second step is to separate audio stream from video stream and encode it into
MP2 audio stream:

lav2wav test.avi | mp2enc -V -0 aud.mp2

Third step is to separate video stream and encode it into MPEG1 (for VCD)
or MPEG2 (for SVCD). For VCD (352x240 resolution, 30 frames/sec) use the
following command:

lav2yuv test.avi | yuvscaler -o VCD | mpeg2enc -s -r 16 -0 video.m1v

For SVCD (480x480 resolution, 60 fields/sec interlaced) use the following com-
mand:

lav2yuv -x -s 2 test.avi | yuvscaler -O SVCD | mpeg2enc -M 2 -F
3 -s -b 2500 -V 400 -0 video.m2v

Forth step is to combine audio and video streams, for VCD:
mplex -f 1 aud.mp2 video.m1lv -0 video.mls

or for SVCD:

12

mplex -f 2 aud.mp2 video.m2v -o video.m2s

Fifth step is to create a VCD or SVCD image that can be written to CD-R or
CD-RW disk, for VCD:

vcdimager video.mls
or for SVCD
vcdimager -t svcd video.m2s

This command creates two files: videocd.bin and videocd.cue. In order to pro-
duce CD-R or CD-RW you need to use the following command:

cdrdao write -device 0,0,0 videocd.cue

at this point you will get a disk that can be played with any software VCD/SVCD
player or standalone VCD /SVCD player as well as most DVD players would play
VCDs.

In order to check your clip or use computer for watching the clip use the following
command:

mplayer video.m2s

In order to playback captured AVI, with LML33 composite video output use
the following command:

lavplay -p C test.avi

All tools mentioned have man pages with a lot of additional information on
switches and modes. For example use 'man lavrec’ command to find more
about video capture utility.

12 Estimating Disk Drive Performance

In order to estimate the performance of the disk subsystem use the following
command:

$ time dd if=/dev/zero of=/tmp/dummy.test bs=1024k count=100

Make sure you have at least 100Mb free on a disk drive mounted on /tmp. If
you have more space available on /tmp, change to count=>500 or more. Then
calculate the transfer rate in Mb/sec.

For example:

13

time dd if=/dev/zero of=/tmp/dummy.test bs=1024k count=120
12040 records in

120+0 records out

0.01luser 8.99system 0:40.16elapsed 22%CPU (Oavgtext+Oavgdata
Omaxresident)

Oinputs+0outputs (199major+271minor)pagefaults 6swaps

That gives 120Mb / 40sec = 3 Mb/sec

If you keep in mind that a video stream of 720x480@30fps in 4:2:2 color with
1:15 compression is about 1.4 Mb/sec you can estimate if your disk subsystem
has enough performance to record/playback video without frames dropped.

13 Frequently Asked Questions (FAQ)

Q: Problems inserting module with SMP kernels:
A:
1. Add #include <linux/modversions.h> to std_module.h.

2. Re-compile the kernel from source! This is necessary because the RedHat ker-
nel/module ’include’ files are _not__ suitable for compiling SMP driver/modules...
(there should really be a "kernel-headers-SMP. ..rpm") You need to make sure
that the option for "set version information on all symbols for modules" is set
to YES.. In fact all the three options in the section "loadable module support"
should be set to YES... (using make xconfig).

Q: Can not fine modversions.h file during LINVS driver compilatons

A: Make sure you have kernel sources installed. Run *make dep’ from /usr/src/linux
(or another location where kernel sources are installd on a non RedHat setup).

14 Depreciated

14.1 Tcl based drivers (v0.x)
14.1.1 Obtaining the Software

From http://linuxmedialabs.com/lml33src download the files 1Iml33driver.tgz,
Iml33tcl.tgz. (or lml33tcl pal.tgz for the PAL version). For example you can
do it with the ’lynx’ browser (assuming you have you computer connected to
the Internet) :

$lynx -dump http://linuxmedialabs.com/lm133src/lml33driver.tgz >
Im133driver.tgz

14

$lynx -dump http://linuxmedialabs.com/1m133src/lml33tcl.tgz > lml33tcl.tgz

Untar these files:
$ tar zxvf lml33driver.tgz
$ tar zxvf lml33tcl.tgz

That would create following subdirectories :
e lml/Iml33driver

This directory contains a set of source files to build a loadable software driver
for LML33 video capture board. After finishing the installation you would get
a set of devices in the /dev directory for various functions associated with the
board.

e 1ml/Iml33tcl
e Iml/Iml33tcl_PAL (for the PAL version)

This directory contains a set of source files to build an extension to Tecl/Tk
interpreter (named lml33tcl and lml33tk). Commands are added to manipulate
LML33 registers, virtual memory and bus mastering (DMA) data transfers from
LML33 board to the system RAM.

14.1.2 Compiling the Driver

Because of the variations in Linux distributions, as well as because of quick rate
of change in the shipping kernels Linux Media Labs provides drivers in source
form, under the terms of Gnu General Public License (GNU GPL).

Change directory to lml/driver and make the loadable driver:
$ cd lml/driver
$ make

The 'make’ command would build the loadable driver object file: 1m133.0

14.1.3 Loading the Driver Module

You may load LML33 driver after each reboot manually, or modify the /etc/conf.modules
to let this happen automatically.
To manually load the driver:

$ su

15

/sbin/insmod 1ml133.0
Don’t forget to exit superuser mode:
exit

At this point you should check the /dev/jvideostat for installed driver informa-
tion that should look simular to:

$cat /dev/videostat

LML33 driver version LML33 v0.2

Copyright (C) 1987-1988 Vassili Leonov and others.

LML33 driver comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it under
certain conditions.

pciPhysBaseAddr=0xe4000000

bus=0 devFn=72

pcilrq=12

high _memory=0x1f00000

Im133PHighMemory=0x1f00000

Double check that high memory corresponds to your RAM size properly (i.e.
to 31M is you have a 32M system)

14.1.4 Tecl/Tk LML33 Extension and Configuration Scripts Insalla-
tion

Change directory to lml/lml33tcl and make the interpreter:

$ cd 1ml/1mi133tcl

$ make

The 'make’ command would build two executable files: 1m133tcl and Iml133tk

Then su to root and run ./suid script to make interpreters suid root, so that
they can do I0 Memory mapping :

$ su

./suid

don’t forget to exit superuser mode:

exit

the script ’suid’ performs the following;:

chown root 1ml33tcl Iml33tk
chmod +s Iml33tcl Iml33tk

Please be aware of the security implications! These scripts give root access to
anybody who has execute permissions for them.

16

14.1.5 Testing the LML33 Card and Software Setup

From the lml33tcl directory you can run:

e ./inii22.tcl <- to initialize the board.

o ./checki2c.tcl <- this should test chip id’s and print TEST OK

e ./bars.tcl <- this should produce color bars on the video output

o ./playback.tcl <- still plays the included test bars captured image back
e ./capture.tcl <- make sure there is some video input

e ./save.tcl <- this should produce 4 files, and should print their sizes

o ./playback.tcl <- still plays your captured image

14.1.6 Using the v0.x Driver

Run capture.tcl and get to ’compression active’ message. Then you can use:
$ dd if=/dev/jvideo of=filename.mjpg bs=50k
to capture a video stream

To capture a single jpeg frame in LML33 format:
$ dd if=/dev/jframe of=file.jpeg

Run playback.tcl and get to ’decompression active’ message. After that you can
use:

$ dd if=filename.mjpg of=/dev/jvideo

to playback a video stream

And use:
$dd if=file.jpg of=/dev/jframe
to put a still image to LML33 analog video output.

You can also use cp command instead of dd

14.1.7 Tecl/Tk LML33 Extension Commands

In addition to all usual Tcl commands the following are added, with the capa-
bility to read hex numbers if they are prefixed with 0x (as in C), i.e. you can
say for example readl 0x1F00000

iopl gives you access to all I/O ports
inb <portAddr> read byte from I/O port

readx <memAddr> read byte, word or long (32bit) (readb,readv,readl) from
a virtual memory location mapped to zr36067 registers.

17

writex <memAddr> <value> same for write operation (as in readx)

setbit067 <portAddr> <bitNo> <value 0 or 1> set zr36067 register bit
to a value

mmap <memAddr> <size> <vmemAddr> mmap certain physical mem-
ory address region of <size> to a desired virtual address, specify 0 if you don’t
care. Sometimes that’s the only way to map - since it would fail otherwise.

mmapLML33 maps physical range of addressed belonging to LML33 to a
virtual memory address and maps the area at 31M (for code buffers). These
addreses are returned by this command as a list.

gpio <bit no> <bit value> set gpio bit to a value

i2c_probe <addr>> probe i2c bus address for a device present. Only 0x88
and 0x8a are used be LML33

i2c_read856 read BT856 chip ID register. Nothing else can be read from
BT856.

i2c_read819 <sub addr> read value from BT819 subaddress

i2c_ writeXXX <sub addr> <value> i2c_ write856 or i2c_ write819, read
register value from a given subaddress.

i2c_setbit XXX <sub addr> <bitNo> <bit value 0 or 1> i2c_ setbit856,
i2¢c_setbit819, set a bit to a value. For 856 only registers at 0xDA, 0xDC and
0xDE are supported.

po_read <guest ID> <guest subaddr> reads a guest register

i2c_probe <addr>> probe i2c bus address for a device present. Only 0x88
and 0x8a are used be LML33

i2c_read856 read BT856 chip ID register. Nothing else can be read from
BT856.

i2c_read819 <sub addr> read value from BT819 subaddress

i2c_ writeXXX <sub addr> <value> i2c_ write856 or i2c_ write819, read
register value from a given subaddress.

i2c_setbitXXX <sub addr> <bitNo> <bit value 0 or 1> i2c_ setbit856,
i2c_setbit819, set a bit to a value. For 856 only registers at 0xDA, 0xDC and
0xDE are supported.

po_read <guest ID> <guest subaddr> reads a guest register

18

